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THE STRON G UNIFORM CONSISTENCY OF
.

— N EAREST NEIGHBOR DENSITY ESTIMATE S

Summary. Let X11... ,X~ be independent , identically distributed random

vectors with values in Rd and with a common probability density f . If Vk (x)

is the volume of the smallest sphere centered at x and containing at least

k of the X1,.. . ,X then f (x) = k/(nVk (x)) is a nearest neighbor density

estimate of f. We show tha t if k = k(n) satisfies k(n)/n 4 0 and k(n)/log n -

then sup j f~(x) - f(x, - i 0  w .p. 1 when f is uni formly continuous on IRd .
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Introduction.

Suppose that X1,. .. ,X~ are independent, Identically distributed
random vectors with values in IRd and wi th a common probability density

1. If vJ~(x) is the volume of the smallest sphere centered at x and containing

at least k of the random vectors X1,. . . ,X , then Loftsgaarden and Quesen—

berry (1965) , to estimate 1(x) from X1, .. . ,X , let

1 (x) = k/(nvk (x) ) - 
(1)

where k = k(n) is a sequence of positive integers satisfying

(a) k ( n ) t a
(2) —

(b) k(n)/n - .0 .

(The factor k-i was used instead of k by Loftsgaarden and Quesenberry; this

has no effect on any of the asymptoti c results stated here.) They showed that

• f (x) is a consistent estimate of 1(x) at each point where f is continuous and

positive. This result can also easily be inferred from the work of Fix and

Hodges (1951) . For d = 1, Moore and Henrlchon (1969) showed that

sup If (x) — f(x) -, 0 in probability —
IL X

if f Is uniformly continuous and positive on R and if , additionally,

k(n )/log n ~ ~~~~~. (3)

Wagner (1973) showed that f (x) Is a strongly consistent estimate of f(x) at

each continuity point of f If , in addition to (2b) ,

a 
~~~e

’
~~~~ <~~ for all ~ > 0 . (4) 
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(Notice that (4) is always Implied by (3) but (2a) and (3) are needed to

imply (4) .) The result of this paper is the following theorem .

Theorem. If lie  uniformly continuous on Rd and If k(n) satisfies (2b) and

(3) then

— . 

sup If ~ x) — 1(x) ! ~ 0 w . p . 1.

If

1(x) = ~~~~~ K((x_Xj)/r(n))/nr fri)d

where K Is the uniform probability density for the unit sphere in IRd and [r(n) I
Is a sequence of positive numbers , the recent results of M oore and Yackel

(1977) (see Theorem 3.1) and the above theorem Immediately yield that

sup ~f (x) — 1(x)! 0 w.p. 1x fl

whenever I is uniformly continuous on IRd and r(n) .4 0 , nr(n)d/log n -4 ~~~.

This fact , an Improvement over the previously published convergence results

for the kernel estimate with a uniform kernel (e.g.,  see Theorem 2.1 of Moore

and Yackel (1977)) , also is a special case of Theorem 4.9 of Devroye (1976)

who proves the same statement for all kernels K which are bounded probability

densities with compact support and whose discontinuity points have a closure

with Lebesgue measure 0 .

Proof.

To simplify notation we assume below that multiplications are always

carried out before division. Let c > 0 and choose 6 > 0 such that

Jf(y) — f(x) f < c/2

- 
.•— , _.~•~_;z;;: 
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whenever x and y are wi thin a sphere of volume 6 . Deferring measurability

arguments for the moment ,

P[sup 11 (x) — f(x) > € 3  =

P[UEVk (x) < k/n(f(x) ÷ c) ) 3 +
x

P ( U 
~~~ 

(x) > k/n(f(x) - e)])
x:f (x)>c

The event 
~~

‘
~
Ik (x) < k/n(f(x) + c)] implies that , for some x , there must be

a sphere centered at x with volume less than k/n(f(x) + e) and containing k

of the random vectors X1, . . . ,X~ . If k/n e < 6  then the probability measure

of such a sphere must be less than k(f( x) + €/2) so that , for one of thesen(f(x) + e)
spheres 5,

~~~~ 
- &(S) - !cIi(x) + e/2)

ke ke
= 2n(f(x) + e) 2n(F + c)

where F is the maximum of f on Rd , ~ is the measure on the Borel subsets of -

Rd corresponding to f and 
~ 

is the empirical measure on the Borel subsets

o fR C
~ for X1,..., X~. Thus , for k / n e < 6 , -

U (Vk (x) c k/n(f(x) + s)] 3 
~

P( sup t i~~(S) — ~(S) ( >k e/ 2n(F  + e)3 (5)
sca n

where a is the class of all spheres in IRd whose volume is less than 4k/ne .

Next , with 4k/n e < a ,

— —~~~ ---------—------ —.a~~~ - ~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~
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u (Vk (x) > k/n(f(x) - )]~x:f(x), e

U t”k~’~ 
> k/n(f(x) — (3e/4))]

x :f(x)>e

which implies that , for some x with f(x) > c, there is a sphere S centered at

x , with volume � 4k/n e , and -

p(S) ~ k(f(x) — e/2)/n(f(x) — (3/4) e),

~~(S) � k/n , and

— w.~ (S) ~ kc/4n(f(x) — (3/4) c)

Thus

P C U (Vk (x) > k/n(f(x) - e)) ~x:f(x)>e 
(6)

P( sup I~ (S) — 
~ 

(s) ! � kc/4nF 3
sea

• n

so that

P~sup lf n(X) - f(x) � €3 � 2P f sup (
~ (S) - k(S)  I � ke/4n(F÷c) 3

x SeG n
n

The proof will be completed if we show that for each e > 0

E 
P~ sup I~ 

(S)  — 

~
(
~) I �k e/4n(F-i-e)3 <~~ • (7)n

n

To prove (7) we employ a varia tion of the argument used by Vapnik

and Chervonenkis (1971) . In this variation use will be made of the following

result . If Y1,.. . ,Y represent independent drawings without replacement

from a population of k 0’s and l’s then , for e > 0 and k � n,

~ 
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e] ~ 2e_ / ( 2
~ 
+ c) (8)

where ~~~, the [number of l’s)/k , is assumed to be ~ ~~~. Additionally (8)

holds when Y1, . .. ,Y~ are Bernoulli random variables with parameter ~&

(Use the two-sided version of Theorem 3 of Hoeffding (1963) along with

~ and log (1 + (c/ i&)) � 2 c/(2i~ + e). See also section 6 of this paper.) 
- •

Now , If sup ~(a) � M and n ~ 8M/62 , an easy modification of Lemma

1 of Vapnik and Chervonenkis (1971) yIelds

Pfsup I ~(A) — ~.(A) J ~ 8] ~

2P[sup J~a~ (A) — i.i ’ (A) J � 8/2] (9)

where ~j ,’ (A) is the empirical measure for A with X~~1, .. . ,X2~ and a is any

class of Borel sets In Rd for which

sup 
~~ 

(A) - ~ (A) ! and
a

~~~~~~~~ I~~(A) 
— 

~~(A) ~a -

are random variables . Putting a = ci we see that M can be taken to ben
4kF/ne. Since , for ~ > 0 ,

P (sup - 

~~(A) - 
~~

‘ (A)~ � 8/2] �

- 

- P(sup j I J~ (A) - 1j, ’ (A) 
~ ~ ~/2 ; sup 

~2n~~ 
�~~M]

n

+ P[sup 
~2n~~ 

> ~M] (10)
an 

~~~~~~~
-- 

~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



we see , using (3) and putting 6 = ke/4n(F + c), that (7) follows whenever

both terms of the right—hand side of (10) are summable for some o ’>  0.

Looking at the first term , we note that it equals

,~ 2nd (2n)~ Eh [sup I~ (A) - ~~ A) f  � 8/2]1[sup ~2~ (A) �cv M]~~~
- an

where is the indicator of the set E ~ Rd and Q is the probability measure
2ndon R for X1,... ,X2 and where the inner summation is taken over all

(2n)! permutations of x1,. .. ,x2~ . But this last integral equals

( 1~~~~~ I dQ
J~2nd (2n) ! L.it(sup ~2~ (A)~~~M] ~~~~~ ( I ~~

(
~

) - ~~ A) J � 8/2]

= 42nd (2n)~ EkSup W .2~ (A)�0r M] ~,~~~E I I b fl
(A) - ~~ A) � 6/2]dQ

~~ 

~~ 2nd 

~~~~~~

‘ 

~: 
~~~~~~~~~ ~~ n) I E ~~ 

- 

~2n~~~ 
� 8/4] IdQ

I - 

- 

~~~~

•

~~ 1where a’ = a’(x 1,.. . ,x2~~~is any finIte subclass of a~ which yields the same

• class of intersections with fx 11.. . ,x~~ 3 and where the inner summation is

again taken over the (2n) ! permutations of x1, . . . ,x2~~. The quantity within

[.3 Is bounded above , using (8) , by

2
2 —n 6 / (32~j,2 (A) + 48)

whenever sa2~ (A) � j~. Since M = 4kF/n e we see , fr om (3) , that for all n

sufficiently large the last integral Is upper-bounded by
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Choosing a’ to be a smallest pc - ~ible subclass , we have (Vapnik and

ChervonenkiS (1971) , Cover (1965)) that(  Li) � 1 + (2fl) d+3 and , using
- \AcG.’

(3) again , that the first term of (10) is summable for all ~ > 0.

Looking at the second term of (10), let r be the radius of a sphere in -‘

Rd whose volume is 4k/nc . If some sphere of radius r contains £ of the

points X1~ •~~ ,X2~ then there must be at least one sphere of radius 2r ,

centered at one of the points X1, . .. ,X2~ , which contains at least A points.

Thus

P(s~ P 
~‘2n~~ 

> ~ M] � 2nP L~2~
(S

~ 
(2r)) > ~ M] - 

- I
n

where Sx(t) denotes the sphere of radius t centered at x. But

(2r) ) >~~M] �
1

C~R~
I 

P(
~2 1(S (2r)) > (~ 2nM— i)/(2n—1)]

~~m a x  P(~ (S (2r)) > t(~ 2nM— 1)/(2n—1)] — 2d4kF/nel
x.Rd 2n-i x -

At this point it is not difficult , using (3) and (8) , to show that the second

d
term of (9) is summable as long as ~ > 2 .

Finally, to complete the proof , it is easy to see that all of the un—

countable unions over x are indeed events and tha t the various supremums

over a are Indeed random variables .
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